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Objectives: This three-year research effort is being conducted at Texas
A&M University by the principal investigator, Dr. Peter F. Stiller, and a
number of graduate research assistants.

We begin this report by reviewing the project’s objectives as outlined in
the original proposal abstract.

The general problem of single-view recognition is central to many target
recognition and computer vision tasks. For example, efficiently
recognizing three dimensional arrangements of features (such as geometric
configurations of lines and/or points) from a single two dimensional view
is a key research question. A solution will require an approach that is
view and pose independent. Unfortunately, existing methods often rely on
computationally expensive template matching that is, strictly speaking,
not view or pose invariant. Instead those methods use comparisons against
templates created for each possible view; with the infinite number of
possibilities being approximated by some finite number of views. To carry
out an invariant approach to target recognition, we must seek out
properties and relationships that are geometrically intrinsic to the
objects and/or images being compared. We must also be aware that
different sensors necessitate different models of image formation and
therefore different forms of invariance. Radar and Ladar make use of an
orthographic model, while most optical sensors use a weak perspective or
full perspective model.

Consideration of view and pose independence, as well as a desire for a
coordinate independent formulation, leads naturally to characterizing
configurations of features by their 3D or 2D geometric invariants. The
specific group (Euclidean group, similarity or conformal group, affine
group, or projective general linear group) to which things should be
invariant is a function of the sensor type. We also need to determine a
fundamental set of equations that express the relationship between the 3D
geometry and its “residual” in a 2D (or 1D) image. These are known as
object/image equations. They should completely and invariantly describe
the mutual 3D/2D constraints. Once found, they can be exploited in a
number of ways. For example, from a given 2D configuration, one could use
the OI-equations to derive a set of nonlinear constraints on the geometric
invariants of the 3D configurations capable of producing that given 2D
configuration, and thus arrive at a test for determining the object being
viewed. Conversely, given a 3D geometric configuration (features on an
object), one could derive a set of equations that constrain the invariants
of the images of that object; helping us determine if that particular
object appears in various images.

We propose to create so-called “global” forms for the object/image
equations, study their properties (especially under geometric degeneracy),
and exploit them to develop new algorithms for target recognition. This
will require using advanced mathematical techniques from algebraic and
differential geometry to construct generalized shape spaces for various
projection and sensor models. We will use that construction to find
natural metrics that express the distance (difference) between two object
configurations, two image configurations, or an object and an image pair.



These metrics should produce the most robust tests for target
identification; at least as far as target geometry is concerned.
Moreover, such metrics will provide the basis for efficient hashing
schemes to do target identification quickly, and they will provide a
rigorous foundation for error analysis in the ATR process.

A summary list of the research topics that are included in this proposal
appears below:

Proposed Tasks and Problems

1. Object/Image Relations and Shape Spaces

2. Extending the O/I Formulation to Other Feature Sets and Sensor Models

3. Symbolic Computation and Alternative Methods for Computing the 0/I
Equations

4. Metrics

5. Recognizing Articulated Objects

6. Geometric Hashing

7. Unlabeled Matching

8. Shapelets

9. Noise Analysis

10. Performance Prediction

11. Technology Transfer

Status of Effort: (Period of Performance 6/1/04 to 9/30/07.)

At the time of this writing the grant has ended, having been on-going for
the previous 40 months.

Recall that in previous AFOSR sponsored work we were able to achieve
several important results, including the understanding, development, and
analysis of a global approach to invariants and object/image equations in
the generalized weak perspective (affine) case. That work also included
our initial construction of a new class of discrimination metrics that are
generalizations of the classical Procrustes metric of statistical shape
theory. 1In the first instance, we provided a complete dictionary between
the old algebraic approach to invariants and the new, more geometric,
global approach. This was worked out completely in the generalized weak
perspective case and appears in our paper "Object/Image Relations, Shape
Spaces, and Metrics" and more recently in a book chapter entitled “Object-
Image Metrics for Generalized Weak Perspective Projection,” in Statistics
and Analysis of Shapes, edited by Hamid Krim and Anthony Yezzi, Jr. and
published in 2006 by Birkhauser. This new approach creates a geometric
framework for discrimination theory and a more robust approach to
recognition. Some of the main ideas and their application to the full
perspective (optical) case were presented in our paper, "Global Invariant
Methods for Object Recognition" described in a previous report. New
results on this topic have just appeared in our paper “Recognizing point
configurations in full perspective,” which was written jointly with our
graduate student Kevin Abbott for the Electronic Imaging Conference,
Vision Geometry XV.



Overall our global approach provides a way to explore the behavior of
recognition algorithms when dealing with multiplicities or geometric
degeneracies (which cannot be handled with other methods). The difficulty
in using the classical numerical invariants for this purpose is that they
are only rational functions on the appropriate quotient variety. As such,
they are not always defined. This leads to serious numerical problems in
any algorithm based on these invariants. To remedy these problems, we
succeeded in replacing these invariants by points in a Grassmann manifold
in the weak perspective case, or by certain geometric objects, namely
toric sub-varieties of Grassmannians, in the full perspective case. The
object/image equations become the expression of certain incidence
relations in the weak perspective case or, in the full perspective case,
certain "resultant-like" expressions for the existence of a non-trivial
intersection of the toric sub-varieties with certain Schubert varieties in
the Grassmannian. This "global" approach to invariants is providing more
robust object recognition algorithms. Moreover, by representing the
relevant shape spaces as varieties embedded in projective space, we can
endow each shape space with a metric by restricting the standard Fubini-
Study metric. These ideas are discussed in our paper "Object Recognition
from a Global Geometric Perspective - Invariants and Metrics." This
approach produces a natural metric on both the object and the image space
that can be exploited to create an effective discrimination theory (i.e. a
meaningful notion of "distance" between objects, between images, and
between an object and an image.) Finally, several new directions have
emerged from our work. These directions have been incorporated into our
research and include the study of object/image equations for unordered
point features to facilitate point cloud matching, research on
object/image equations with parameters to handle articulation of objects,
the investigation of invariant point to surface matching, 3D
reconstruction from motion, and the statistics of shape for noise
analysis. Progress on these will expand the recognition power of our
approach and its applicability to Air Force problems.

Accomplishments/Findings:

We report below (in summary form) on several significant areas of
progress. Details can be found in the listed papers.

1. Shape Statistics

Kendall pioneered statistical shape theory for point features in the plane
under similarity transformations. Among his results is a description of
the distribution of shapes for point features selected from independent
spherical normal distributions each with covariance matrix normalized to
the 2 by 2 identity matrix and with means at selected points in the plane.
One can regard this as an early attempt to introduce the idea of “noisy”
shapes. An important question is to determine for a given distribution of
object shapes, the corresponding distribution of image shapes under
appropriate hypotheses. This was something not addressed by Kendall or
others working in this area. Building on Kendall’s results in 2D, we are
trying to answer the above question in a particular case involving a small
number of point features in the plane under similarity transformations
which are projected to 1D. This is a modified radar case where scale is
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2. 3D shape reconstruction from motion.

This is the newest aspect of our work. The goal is to improve upon the
ideas and methods of Mark Stuff to do 3D target geometry reconstruction
from a series of 1D radar range profiles taken of a target moving relative
to the sensor. We have been working with a simplified 2D to 1D
orthographic model which captures the essence of the problem. The central
issue is how to find the object that best fits the data provided by the
accumulated set of noisy images. In our formulation this means finding
the object whose image locus in the image shape space best fits the image
data. The key is what is meant by “best fit.” We argue that the natural
Riemannian metric on the image shape space is the best measure to use in
determining “goodness of fit,” and we are attempting to design an optimal
fitting procedure based on this idea.

3. Global descriptions of shape spaces in the orthographic (radar) case.

In order to carry out our program of developing the global version of the
object/image equations and object/image metrics for the orthographic case
it is necessary to understand how the shape spaces for points features in
this case isometrically embed in standard Euclidean space. For small
numbers of point features in 1D this is relatively easy, but for greater
numbers of points in 1D and any number in 2D or 3D, this becomes a harder
problem. It essentially amounts to finding an embedding of real or
complex projective space isometrically into a Euclidean space (real or
complex) of as low a dimensional as possible, and then extending this
embedding to a certain cone over the projective space. We have been able
to do this, paving the way for the full development of our approach to
recognition in the radar case.

4. Testing our algorithms and new applications.

Work on designing and implementing experiments to test several recognition
algorithms based on our object/image metrics was carried out during the
course of the project. The results were summarized in our paper,
"Robustness and statistical analysis of object/image metrics," which was
presented at Electronic Imaging, Vision Geometry XIV, in San Jose, CA, in
January 2006. The results showed that for point features in the weak
perspective case, our object/image metric performs surprisingly well even
in the face of sensor noise. The results also scaled well with respect to
the size of the object database and showed the expected strong increase in
target matching performance with each additional feature point considered.
In addition, we have recently been collaborating with Ms. Olga Mendoza, a
young researcher at AFRL, Wright —Patterson AFB, who has performed
additional tests of the algorithms, and who has an interest in applying
the object/image metrics to problems in image registration and tracking.



5. The Full Perspective Case — 0/I Equations and Metrics
In joint work with our Ph.D. student Kevin Abbott we have made significant
progress in the very difficult case of full perspective prOJectlon
(essentially the pin-hole camera model of projection) which is important
for recognizing objects in optical images. The central difficulties in
this case are that the shape spaces are not well understood and that the
computational complexlty increases dramatically when dealing with
projective invariance. We were able to make significant progress this
past year, introducing the first true global version of the object/image
equations in the full perspective case, and the first metrics fully
invariant to projective/perspective transformations. These results appear
in our paper "Recognizing Point Configurations in Full Perspective," and
in greater detail in Kevin Abbott’s Ph.D. thesis.

6. Recognizing configurations of linear features in the generalized weak
perspective case.

Very little previous work has been done on the shape theory of line
configurations. 1In the course of this project we carried out an
investigation of the problem of single-view recognition for sets of line
features under generalized weak perspective projection. In particular we
derived the object/image equations for projection from 2D to 3D.
Unfortunately because this required using the Plucker coordinates of the
lines, we had to fall back on standard position methods to define our
invariants, meaning that the results require certain general position
assumptions that we would eventually like to eliminate. In addition, this
work on the generalized weak perspective case has revealed an approach to
the orthographic (radar) case which we hope to flesh out shortly. Our
results appear in a paper entitled “Recognition of Configurations of Lines
I — Weak Perspective Case” which was published in late 2005.

7. Comparison between shape in the similarity case and shape in the
affine case.

The definition and study of shape spaces for the similarity group began
with Kendall in 1977. He treated ordered k-tuples of points in Euclidean
m-space (not all the same point). Two such k-tuples of feature points (or
“landmarks”) are deemed equivalent if they differ by a similarity
transformation (i.e. rotation, translation, and/or positive scale). The
resulting equivalence class is known as the “shape” of the configuration
of the k feature points. The geometry of these spaces has been studied
by many authors. In previous work we examined the shape spaces for the
larger affine group and explored the relationship between the shape of a
configuration of points in three dimensions and the shapes of all the
images of that configuration in two dimensions under all possible (affine)
generalized weak perspective projections. This leads to the notion of
the object/image equations which quantify the relationship between 3D
object features (points) and 2D image features. They are zero if and
only if a generalized weak perspective projection exists which takes the
3D data to the 2D data. The geometry in this case is particularly nice,
relating as it does to properties of Grassmann manifolds. Also the
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natural metric geometry, both in the classical similarity case
(Procrustes metric) and the affine case (Fubini--Study metric), provides
a way to measure the distance between shapes, both object shapes and
image shapes, as well as providing a natural notion of distance (i.e.
matching) between an object shape and an image shape.

In our initial work under this grant, we sought to gain a clearer
understanding of the various notions of shape (i.e. shape for different
transformation groups acting on the feature points). The first problem
we considered was the relationship between the shape spaces of Kendall
for the action of similarity transformations, consisting of rotations,
translations and scale (no reflections for the moment) and the shape
spaces for the action of the affine group. We were able to make a complete
analysis of this situation. The primary discovery was the rather simple
and elegant form of the map taking you from similarity shape to affine
shape and the complete analysis of the locus of degenerate similarity
shapes which leads to some interesting topological issues.

The results of this work appear in our paper "The Relationship Between
Shape under Similarity Transformations and Shape under Affine
Transformations," a copy of which was attached to one of our previous
reports.

8. Invariants and Shape Characterizations for Unordered Feature Points

We have begqun investigating extensions of our methods to the difficult
case of unordered feature points. Here we can make use of new work of
Boutin and Kemper, “On Reconstructing Configurations of Points in the
Projective Plane from a Joint Distribution of Invariants,” preprint,
April 2004. This paper provides a complete description of the

invariants for unordered point features in an image under full
perspective. Our hope is to extend this to object features in 3D and then
combine it with the projection from 3D to 2D to obtain invariant matching
equations (object/image equations) that are also permutation invariant.
This would in turn hopefully lead to permutation invariant metrics for
point feature object/image comparisons in the full perspective case.

9. The Weak Perspective Case for Point Features

This material has been reported on previously and was recently written up
in an invited book chapter (see below) published by Birkhauser.
Characteristics of our Results

Below is a brief outline in bullet form of the principle characteristics

of our approach to using object/image metrics for sensor exploitation and
target identification.



+ Is a Feature Based Approach to Target Identification

The approach makes use of small numbers of sensed features associated with
features in the target geometry.

+ Invariance to Pose and Scale

The method allows identification to be achieved across all poses and, if
desired, at varying scales without resorting to exhaustive template
matching.

+ Based on Intrinsic Measures of Shape

To achieve invariance the method makes use of the emerging mathematical
theory of shape that characterizes internal relationships among features,
independent of relevant transformations like rotation, translation, and
scale. These characterizations turn out to also be independent of the
coordinate system used to record the target or image feature locations.

+ Permits an Invariant Characterizations of the Fundamental Matching
Criteria known as the Object/Image Equations

We can express the necessary and sufficient conditions for the invariant
shape of a set of target features to be consistent with the invariant
shape of a set of image features as a set of equations in local or global
coordinates on the space of object shapes and image shapes. Consistency
in this case means that there exists some pose of the object, some sensor
location, and some set of sensor parameters that will result in the target
features projecting through the sensor to the observed image features.
These equations are called object/image equations.

Since the input to the (non-linear) object/image equations are a set of
target shape coordinates and a set of image shape coordinates, we can use
the equations to invariantly determine matching and also to determine all
image shapes that can be achieved from a given object shape or all object
shapes capable of producing a given image shape.

+ Relies on Metric Geometry

The methods yield intrinsic metrics on the "spaces of shapes". These
metrics satisfy the usual triangle inequality and can be used to measure
object or image shape similarity (up to the allowable transformations,
e.g. rotation, translation, scale, etc.) In addition they provide a
mechanism for effective hashing in large databases of target or image
feature sets.

+Yields a Natural Measure of Matching (Distance) between an Object Feature
Set and an Image Feature Set

The theory provides two natural "metrics" for invariantly matching a given
set of object features to a given set of image features. We can compute
in object space, using the metric distance between object shapes, by
finding the minimum distance between the given object and all objects



capable of producing the given image. The alternative is to work in image
space,’ using the metric in that space, to compute the minimum distance
between the given image and all images of the given object. A deep
duality theorem assures that, with suitable normalization, these two
metrics are the same. This means that for any particular sensor type
amenable to this approach, there is a unique natural pose and scale
invariant measure of object/image closeness of match!

+Amenable to Statistical Analysis and ATR Theory

Shape was originally introduced for the purpose of doing invariant
statistical analysis. Recent workshops at AIM (American Institute for
Mathematics), IMA (Institute of Mathematics and Its Applications), and
SAMSI (Statistical and Applied Mathematical Sciences Institute) dealing
with the theme of shape and statistics on shape manifolds, points to the
likely development of new techniques to do more sophisticated statistical
analysis of the ATR problem, and to the development of an ATR theory to
predict optimal system performance. Also these conferences and workshops
point to a wide array of applications, including important applications of
shape and shape statistics to medical images, automated inspection, and
image segmentation.

+ Computationally Efficient

While the description of shape and the metrics above involve some rather
sophisticated mathematics, in many instances the shape coordinates and
metric values are easily and directly computable via simple and fast
algorithms involving minimal computational resources.

+ Maximally Robust

Because the metrics are based on shape, they are in some sense the "best
possible" matching criteria as far as target geometry is concerned. As a
result the metrics should be maximally robust to sensor error,
pixelization, or small target variations. Our recent studies with large
synthetic databases of feature sets bear this out. Additional tests have
been performed by Ms. Olga Mendoza at AFRL, Wright-Patterson, AFB and by
researchers at the University of Illinois.

Personnel Supported:

In addition to the principal investigator, the project has provided
support for two graduate research assistants: Mr. Kevin Abbott and Ms.
Jennifer Snodgrass, both graduate students in the Mathematics Department
at Texas A&M University.

Ms. Snodgrass was engaged in the coding and testing of a number of
algorithms and in the design of computational experiments to verify
various theoretical ideas that emerged during the course of our research.
Ms. Snodgrass, who received her Bachelor's degree in Applied Mathematics
from Rice University, completed work on her Master’s degree in May 2005.



Mr. Abbott, a Ph.D. student in Mathematics, became involved in the project
as a result of a graduate course in Shape Theory offered by the

P.I., Dr. Stiller, in the Spring of 2004. This course presented the
results of earlier AFOSR sponsored research along with background material
in differential geometry and statistical shape theory. Mr. Abbott
recently completed his Ph.D. dissertation on algebro-geometric aspects of
shape theory in the full perspective case. He graduated last month
(August 2007) and has taken a job with Metron Corp. in Arlington,
Virginia. Mr. Abbott was involved with several aspects of our
collaboration with researchers at the Air Force Research Lab and
accompanied the P.I. on visits to Wright Patterson Air Force Base in 2006.

Faculty: Dr. Peter F. Stiller, Prof. of Mathematics and Computer Science

Graduate Students: Jennifer Snodgrass, Kevin Abbott

Publications:

Several publications dealing with this project’s results have or will
appear in print shortly. A copy of the two most recent are attached to
this report. The others were appended to our previous reports or are in
the midst of the publication process.

D. Gregory Arnold, Olga Medoza, and Peter F. Stiller, “Image Registration
via Invariant Object/Image Equations and O/I-Metrics,” Algorithms for
Synthetic Aperture Radar Imagery XV, SPIE Defense and Security Symposium,
Orlando, FL, 3/08, to appear.

Arnold, G., Stiller, P. F., and Sturtz, K., “Geometric Methods for ATR —
Invariants, Object/Image Equations, and Metrics,” under revision for
publication, AFRL Technical Report, 45 pages (2007).

Stiller, P. F. and Abbott, K., "Recognizing Point Configurations in
Full Perspective," Electronic Imaging, Vision Geometry XV, Vol. 6499, San
Jose, CA, 12 pages (2007).

Stiller, P. F. and Arnold, D. G., "Mathematical Aspects of Shape
Analysis for Object Recognition," Electronic Imaging, Visual
Communications and Image Processing, Vol. 6508, San Jose, CA, 12 pages
(2007).

Stiller, P. F., "Robustness and statistical analysis of object/image
metrics," Electronic Imaging, Vision Geometry XIV, Vol. 6066, San Jose,
CA, 1/06, 9 pages (2006).

Arnold, G., Stiller, P. F., and Sturtz, K., “Object-Image Metrics for
Generalized Weak Perspective Projection,” chapter in Statistics and
Analysis of Shapes, Editors Hamid Krim and Anthony Yezzi, Jr.,
Birkhauser, pp. 253-279 (2006).



Stiller, P. F., "Recognition of Configurations of Lines I — Weak
Perspective Case," Proceedings SPIE Int'l Symposium on Optical Science
and Technology, Mathematical Methods in Pattern and Image Analysis, Vol.
5916, Jaako Astola, Editor, San Diego, CA, 8/05, 13 pages (2005).

Stiller, P. F., "The Relationship Between Shape under Similarity
Transformations and Shape under Affine Transformations," Proceedings SPIE
Int'l Symposium on Optical Science and Technology, Mathematics of
Data/Image Coding, Compression, and Encryption, with Applications,

Vol. 5561, Mark Schmalz, Editor, Denver, CO, 8/04, pp. 108-116 (2004).

Stiller, P. F., "Vision metrics and object/image relations II:
Discrimination metrics and object/image duality," Electronic Imaging,
Vision Geometry XII, Vol. 5300, San Jose, CA, pp. 74-85 (2004).

Interactions/Transitions:

In June 2004, Dr. Stiller visited the Air Force Research Laboratory's
Target Recognition Branch AFRL/SNAT where plans for collaborative work
were made and several of the topics in the proposal were discussed.

In August 2004, Dr. Stiller attended the SPIE International Conference on
Optical Science and Technology in Denver for the conference on Mathematics
of Data/Image Encoding, Compression, and Encryption VI, with Applications.
He presented a paper entitled "The Relationship Between Shape under
Similarity Transformations and Shape under Affine Transformations." At
the meeting Dr. Stiller continued discussions with Dr. Mark Schmaltz of
Florida State University on possible novel applications of our research on
metrics for object recognition to the completely different problem of
evaluating data compression and encryption schemes.

Also in August 2004, Dr. Stiller visited Vexcel Corporation in Boulder,
Colorado and presented a talk entitled “Shape Theory and Invariant Metrics
for Object and Target Recognition.” His visit was hosted by Dr. Carolyn
Johnston. Dr. Stiller was originally put in contact with Dr. Johnston
several years ago by Dr. Arje Nachman of the Air Force Office of
Scientific Research.

From January 17, 2005 to January 23, 2005 Dr. Stiller again visited the
Air Force Research Laboratory's Target Recognition Branch AFRL/SNAT to
continue his research collaboration with Dr. Greg Arnold. Dr. Stiller
returned to AFRL/SNAT in May and June of 2005. During that visit, work
on the weak perspective case for point features was completed and written
up in an invited book chapter entitled “Object-Image Metrics for
Generalized Weak Perspective Projection” which has now appeared in a
volume entitled Statistics and Analysis of Shapes, edited by Professor
Hamid Krim of North Carolina State University.

In May 2005, Dr. Stiller attended the AFOSR Program Review at North
Carolina State University hosted by Dr. Jon Sjogren, AFOSR and Professor
Hamid Krim, NC State. Dr. Stiller spoke on "Shape, Shape Matching Metrics,
and Learning Shape by Sampling (Shapelets)" jointly with Dr. Greg Arnold,
AFRL/SNAT.



' While visting AFRL’s Target Recognition Branch AFRL/SNAT in June 2005, Dr.
Stiller held a number of discussions with Mr. Ron Dilsavor of SET
Associates, Inc. concerning ways to use this project’s results to
recognize objects in SAR images.

In August 2005, Dr. Stiller attended the SPIE International Conference on
Optical Science and Technology in San Diego for the conference on
Mathematical Methods in Pattern and Image Analysis. He presented a paper
entitled " Recognition of Configurations of Lines I — Weak Perspective
Case."

Dr. Stiller was an invited participant in the IMA Workshop on New
Mathematics and Algorithms for 3-D Image Analysis, at the Institute for
Mathematics and its Applications, University of Minnesota, Minneapolis,
MN, Jan. 9-12, 2006. Several researchers from ARFL also attended,
including Dr. Greg Arnold, AFRL/SNAT and Ms. Olga Mendoza, a recent hire
at AFRL. During the workshop, Dr. Stiller and Dr. Arnold held discussions
with Dr. Guillermo Sapiro, Department of Electrical and Computer
Engineering, University of Minnesota, concerning ideas for point cloud
matching and with Professor Peter Olver concerning aspects of differential
invariants.

Dr. Stiller returned to the Institute for Mathematics and its
Applications, University of Minnesota, in April 2006 to attend the
Workshop on Shape Spaces (April 3-7, 2004) organized by Professor David
Mumford. Joint with Dr. Arnold, AFRL/SNAT, Dr. Stiller held discussions
with Dr. T. J. Klausutis, AFRL, Eglin, AFB, who also attended the
workshop. These discussions concerned applications of shape theoretic
techniques to various Air Force target recognition problems.

In May 2006, Dr. Stiller visited Dr. Arnold at the Air Force Research
Laboratory's Target Recognition Branch AFRL/SNAT. The purpose was to
engage in collaborative research on a number of problems including the

3D reconstruction from motion problem and various shape statistics
problems. Dr. Stiller also worked with two graduate students visiting
AFRL/SNAT for the summer. During this visit Dr. Arnold and Dr. Stiller
traveled to Purdue University to speak with Dr. Mirelle Boutin (mentioned
above) about her work on invariants for unordered point features and to
give a joint talk in the Electrical Engineering Department. This resulted
in Dr. Arnold and Dr. Stiller being invited by Prof. Boutin to submit a
paper to the SPIE conference on Electronic Imaging, Visual Communications
in Image Processing which was held during January 2007 in San Jose.

In August 2006 Dr Stiller returned to Wright Patterson AFB to again
coordinate research efforts with Dr. Arnold and to attend the Multi-Modal
Biometrics Workshop hosted jointly by the Human Effectiveness Biosciences
and Protection Division and the Sensors ATR Division of AFRL at Wright
Patterson AFB. The goal was to exchange ideas on recognition and
identification technologies. It was an opportunity for us to explore
applications of our recognition techniques to biometric problems such as
face/body recognition and gait analysis.



On 30 January to 1 February 2007 Dr. Stiller attended SPIE’s Conference on
Electronic Imaging held in San Jose, CA to present two papers. The first
paper "Recognizing Point Configurations in Full Perspectlve" was joint
with his Ph.D. student Kevin Abbott and was presented in Vision Geometry
XIV. Dr. Stiller chaired the session on Surface Analysis and
Reconstruction in that conference. The second paper "Mathematical Aspects
of Shape Analysis for Object Recognition" was an invited paper for the
session on Visual Communications and Image Processing. One important
research contact to come out of this meeting was a series of discussions
with the 3D TV group at Phillips Electronics. They are interested in
using our techniques as a tool for adding depth information to existing
video content. In addition, we learned that researchers at the University
of Illinois are using our Object/Image metric for the affine case in a
number of computer vision experiments.

From March 3™ to March 7*" 2007 Dr. Stiller participated in the workshop on
New Directions in Complex Data Analysis for Emerging Applications that was
held under the sponsorship of AFOSR and NSF in Breckenridge, Colorado. In
addition to giving a brief presentation entitled “Algebraic Geometry,
Shape, and Understanding Configurations from Projections to Lower
Dimensions with Applications to Object Recognition and Image
Understanding,” Dr. Stiller participated in various panel discussions.
While at the workshop, Dr. Stiller began discussions with Dr. Louis Scharf
on a geometric approach to a long standing problem in signal processing.
This problem can be reinterpreted as minimizing a distance in a
Grassmannian between two subvarieties, one of which comes from the k-
secants of a rational normal curve and the other of which is a standard
Schubert cycle.

After the completion of the Spring semester in May 2007, Dr. Stiller made
another visit to Wright Patterson AFB to again coordinate research efforts
with Dr. Arnold. The focus was on updating and expanding our joint paper
"Geometric Methods for ATR - Invariants, Object/Image Equations, and
Metrics" for publication. 1In addition we continued discussions with Dr.
Matt Ferrara at AFRL on 3D target reconstruction from multiple 1D radar
range profiles.

On June 21*" and 22" 2007 Dr. Stiller attended the AFOSR Sensing Program
Review at Harvard University. He spoke on “Shape, Shape Statistics, and
Reconstruction.”

Dr Stiller was an invited attendee at the SAMSI Summer Program on the
Geometry and Statistics of Shape. This program ran from July 7" through
July 13", 2007 at the Statistical and Applied Mathematical Sciences
Institute (SAMSI) in Research Triangle Park, NC.

In August 2007 Dr. Stiller returned to AFRL, Wright-Patterson to continue
his collaboration with researchers there. 1In addition a new collaborative
effort was begun with Ms. Olga Mendoza (AFRL/SNAT) dealing with
applications of our object/image metrics in the affine case to image
registration problems.



New Discoveries, Inventions, or Patent Disclosures:

Beyond the research results discussed above, there are no new discoveries,
inventions, or patent disclosures.

Person completing this report:

Dr. Peter F. Stiller

Professor of Mathematics and Computer Science

Associate Director of the Institute for Scientific Computation
Phone: (409) 862-2905

Fax: (409) 845-5827

Date: 30 September 2007

Attachments:

1) Summary of our talk at the Breckenridge workshop.

2) Abstract of our paper, “Image Registration via Invariant Object/Image
Equations and O/I-Metrics.”

3) Copy of our slides from the Sensing Program Review at Harvard.

4) Copy of our recent paper "Recognizing Point Configurations in Full
Perspective” joint with Kevin Abbott.

5) Copy of our recent paper "Mathematical Aspects of Shape Analysis for
Object Recognition" joint with D. Gregory Arnold (AFRL).

Note: 3) — 5) provided as separate files in the electronic version of
this report.



Attachment #1

New Directions in Complex Data Analysis
for Emerging Applications

Breckenridge, Colorado
March 4-7, 2007

Summary of Talk: “Algebraic Geometry, Shape, and Understanding
Configurations from Projections to Lower Dimensions with Applications to
Object Recognition and Image Understanding” by Dr. Peter F. Stiller,
Professor of Mathematics and Computer Science, Associate Director
Institute for Scientific Computation, Texas A&M University.

Efficiently recognizing three dimensional arrangements of features on
an object from a single two dimensional view requires an approach that is
view and pose invariant. Existing methods often rely on computationally
expensive template matching. Those methods use comparisons against
templates created for all possible views; with the infinite number of
possibilities being approximated by some finite number of views. To carry
out an invariant approach to target recognition, we need to exploit
properties and relationships that are geometrically intrinsic to the
objects and/or images being compared.

Our approach to view and pose independence (as well as coordinate
independence) starts with a characterization of a configuration of
features by its geometric invariants. The specific group to which things
should be invariant is a function of the sensor type. We then derive a
fundamental set of equations that express, in an invariant way, the
relationship between the 3D geometry and its “residual” in a 2D (or 1D)
image. These equations completely and invariantly describe the mutual
3D/2D constraints. Once derived, they can be exploited in a number of
ways. For example, from a given 2D configuration, we are able to
determine a set of nonlinear constraints on the geometric invariants of
the 3D configurations capable of producing that given 2D configuration,
and thereby arrive at a test for determining the object being viewed.
Conversely, given a 3D geometric configuration (features on an object), we
are able to find a set of equations that constrain the invariants of the
images of that object; helping to determine if that object appears in
selected images. With these results in hand, we plan in future work to
focus on three major problems: 1) object/image metrics on shape spaces to
provide a distance (difference) between two object configurations, two
image configurations, or an object and an image pair in pose invariant,
coordinate free terms, 2) reconstruction of an object’s 3D shape from 2D
sensed information, either from multiple sensors or multiple images of a
moving object, 3) statistical issues surrounding random shapes,
distributions of shapes, and noise in object recognition.

Issues and Collaborations Arising From the Conference: One topic that arose
in several of the presentations, was the issue of dealing with data on
certain manifolds, most notably Grassmann manifolds. In the work of
Peterson, Kirby and in my own work complex image data is represented by



data points in a Grassmannian. Appropriate metrics and also procedures
for fitting subvarieties to such data need to be developed. The general
question of invariant features of high dimensional data under projections
to lower dimensions is also an interesting one. It appears that some
aspects of our techniques could be applied to such high dimensional
problems. Finally, an interesting signal processing problem, introduced
to the author by Louis Scharf at the meeting, appears to have a nice
geometric formulation in terms of secant varieties of rational normal
curves, where the same sort of metrics on Grassmannians play a role in
finding the optimal answer. We are currently investigating this.



Attachment #2

Image Registration via Invariant Object/Image Equations
and O/I-Metrics

By D. Gregory Arnold, Olga Mendoza, and Peter F. Stiller

The problem of single-view recognition is central to many target recognition and computer
vision tasks. Understanding how information available in a single image of an object or
scene, be it an optical image, a SAR image, or a radar range profile, relates to the
target object's or scene'’'s geometry is a key step in building reliable identification
algorithms. Likewise such knowledge is critical to understanding how two different
images of the same object or scene are related. For example, without a priori knowledge
of a sensor's viewpoint, an object's pose, or a sensor's parameters, it is difficult to
efficiently recognize a three-dimensional arrangement of features (such as a geometric
configuration of lines and/or points) on an object or to efficiently register two images
of the same object or scene. What is needed is an approach that is invariant to changing
viewpoints, adjustments in the sensor parameters, or variations in the pose.

In recent work the authors have developed such an approach to object recognition, and the
goal of this paper is to apply the same techniques to the registration problem. To carry
out their recognition work, they started with a characterization of a configuration of
features by its geometric invariants. The specific transformation group to which things
needed to be invariant was a function of the sensor type. They then derived a
fundamental set of equations that expressed, in an invariant way, the relationship
between the 3D geometry and its “residual” in a 2D image. These equations completely and
invariantly described the mutual 3D/2D constraints. Once derived, the equations could be
exploited in a number of ways. For example, from a given 2D configuration, they could
determine a set of nonlinear constraints on the geometric invariants of the 3D
configurations capable of producing that given 2D configuration, and thereby arrive at a
test for determining the object being viewed. Here having two images of the same 3D
configuration would add additional constraints and tell you a fair amount about the
relationship between the two images — thereby assisting with the registration of those
images. That is something we take up in this paper. Conversely, given a 3D geometric
configuration (features on an object), a set of equations that constrain the invariants
of the images of that object were derived; helping to determine if that object appears in
selected images. These equations also play a role in registration of different images
of the same scene or object. They give us an understanding of the locus of all images
and the flow from image to image as the sensor moves. We discuss applications of this in
the paper. Finally, the authors have developed certain natural invariant metrics (called
OI-metrics) on the relevant shape spaces. Thes metrics provide a distance (difference)
measure between two object configurations or two image configurations and express the
distance (failure to match) between, say, an image-image pair. These metrics are pose
and view invariant and can be expressed in coordinate free terms.

For example, consider the generalized weak perspective model of image formation, which is
appropriate to optical images when the object or scene in the far field. Here the
relevant invariance is to the affine group of transformations. In this case the OI-
metric for images will measure the failure of two images to differ by an affine
transformation. As such, it provides a quantification of the drift phenomenon seen in
image registration done via affine mappings.

By understanding the contribution of a single image toward the recognition or recovery of
the geometry/shape of the object or scene for different sensors, it will be easier to
develop methods to integrate information from multiple images taken by uncalibrated,
distributed sensors of varying types, or to make use of a series of images taken by a
single sensor of a moving object. We investigate in this paper how to apply our
invariant techniques to the problem of registering those multiple images.
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Recognizing Point Configurations in Full Perspective

Kevin Abbott and Peter F. Stiller
Department of Mathematics, Texas A&M University, MS3368
College Station, Texas 77843-3368

ABSTRACT

In this paper we examine two fundamental problems related to object recognition for point features under
full perspective projection. The first problem involves the geometric constraints (object-image equations) that
must hold between a set of object feature points (object configuration) and any image of those points under
a full perspective projection, which is just a pinhole camera model for image formation. These constraints are
formulated in an invariant way, so that object pose, image orientation, or the choice of coordinates used to
express the feature point locations either on the object or in the image are irrelevant. These constraints turn out
to be expressions in the shape coordinates calculated from the feature point coordinates. The second problem
concerns the notion of shape and a description of the resulting shape spaces. These spaces aquire certain natural
metrics, but the metrics are often hard to compute. We will discuss certain cases where the computations are
managable, but will leave the general case to a future paper.

Taken all together, the results in this paper provide a way to understand the relationship that exists between
3D geometry and its “residual” in a 2D image. This relationship is completely characterized (for a particular
combination of features) by the above set of fundamental equations in the 3D and 2D shape coordinates. The
equations can be used to test for the geometric consistency between an object and an image. For example, by
fixing point features on a known object, we get constraints on the 2D shape coordinates of possible images of
those features. Conversely, if we have specific 2D features in an image, we will get constraints on the 3D shape
coordinates of objects with feature points capable of producing that image. This yields a test for which object is
being viewed. The object-image equations are thus a fundamental tool for attacking identification/recognition
problems in computer vision and automatic target recognition applications.

Keywords: object recognition, full perspective, object-image equations, shape, shape coordinates.

1. A REVIEW OF THE AFFINE CASE

We consider r points in space, which we think of as feature points on some object. We refer to this set of
points as an object configuration. Next, we “take a picture” of the object by choosing a plane and projecting
these feature points into that plane. We will call this set of points in the plane an image configuration.

In this section we will (1) identify the space of shapes, which are configurations modulo the action of a certain
group of transformations on R™, n = 2,3, and give global coordinates on the shape space, (2) give necessary and
sufficient conditions for an image configuration to be a projection of an object configuration, and (3) define a
natural metric on the shape spaces. For additional details see Arnold, Stiller, and Sturtz [1].

1.1. The Generalized Weak Perspective Projection

The type of projections we will consider are called generalized weak perspective projections. If we represent points
in R™ (n =2 or 3) in the form
Iy

P:
In
1

Further author information: (Send correspondence to P.F.S.)
P.F.S.: E-mail: stiller@isc.tamu.edu; Telephone: 979-862-2905; Fax: 979-845-5827



these projections as maps from R3 to R? take the form

tin ti2 tiz tie
T=| tan tzz taz3 tia
0 0 0 1

where T' has rank 3.

Now let A be an invertible 3 x 3 matrix and let B be an invertible 4 x 4 matrix. It turns out that if T is a
generalized weak perspective projection, then AT'B is a generalized weak perspective projection if an only if A
and B are affine transformations i.e. A and B take the form

where S € GL(n) and ¢y,...,c, € R.

What does this mean in terms of our object and image configurations? Suppose Q € R? is the image of a
point P € R? under a generalized weak perspective projection T, i.e. @ = TP. Then if we move P by some
affine transformation B to another point P’ and if we move @ to another point @' by an affine transformation
A, we will have that Q' = ATB~'P’. As a result, we see that @’ is the image of P’ under the generalized weak
perspective projection AT B~! (since A and B~! are both affine transformations).

This observation shows us that by choosing to consider generalized weak perspective projections, the best
that we can hope to do is relate object configurations to image configurations up to affine transformations.

1.2. The Affine Shape Spaces

As the preceding observation suggests, we should consider two configurations (object or image) equivalent if
they differ by an affine transformation. In a sense equivalent configurations are the same object or image just
rotated, translated, scaled, or otherwise moved by an affine transformation. We would like to construct the space
of configurations of r points in R™ modulo the action of the group of affine transformations. These spaces would
then represent the distinct objects and images independent of pose or view. To do this we must assume that
the points in our configuration are non-coplanar for n = 3 or non-collinear for n = 2, which is reasonable since a
configuration of coplanar points in R® would in fact be a configuration of points in R? and would not represent
a real 3D object, etc.

Let P, = (zi1,..-,ZTin) for i = 1...7, r 2 n+ 2 be a configuration of r non-coplanar (or non-collinear)
points in R®, n = 3 (or 2), and consider the matrix

Iy T2 Iy
T2 Z22 -t Ir2
M=
Tin Tn2 Tyn
1 1 1

Now to the configuration P, ..., P, we associate an (r — n — 1)-dimensional linear subspace, K™™"~! ¢ R".
In particular, K™="~! is the null space of M when we view M as a linear map from R” to R"*!. The fact that
K7™="=! has dimension r —n — 1 follows from the observation that M has rank n + 1 as a linear map because at
least one (n + 1) x (n + 1) minor of M has non-zero determinant due to non-coplanarity (or non-collinearity).



The important thing to notice is that if we apply an affine transformation A4 to our configuration we obtain
a new (n+ 1) x r matrix

’ r r

Ti1 T2 Ty
! ’ !

Ti2 T2 0 Tra

M = : : : =AM

'’ ' !

Il.n In.2 Ir.n
1 1 1

but the null space of M’ is exactly K™~ the null space of M. Moreover, since K*™"""! ¢ H™! =
{(v1,...,v:) € R"|3°[_, v; = 0}, we may assign to our configuration the unique point [K""~!] € G(r —n —
1, H™'), the Grassmannian of (r — n — 1)-dimensional subspaces in the (r — 1)-dimensional space H"™™!, a well
understood compact manifold of dimension n(r —n — 1).

DEFINITION 1.1. We call the manifold X = G(r —n — 1, H™™!) the affine shape space for configurations of r
points in R". If n = 3, we will call X = G(r — 4,r — 1) affine object space (or just object space) and refer to
points in this space as object shapes. If n = 2, we will call X = G(r — 3,7 — 1) affine image space (or just image
space) and refer to its elements as image shapes.

Every point in X is of the form [K™~"~!| for some configuration Py, ..., P, € R™, and most importantly, if
two configurations Py,..., P. € R" and Py, ..., P} € R™ give the same point in X, then they differ by an affine
transformation.

1.3. The Pliicker Embedding

Since X is a real manifold, we can find local coordinates for a point [K] € X; however, since we ultimately
want to give relations that tell us when an image configuration is a projection of an object configuration, it
would be more convenient to find global coordinates on X. We may do so by mapping X into a projective space
via the Plicker embedding. In general, the Plicker embedding embeds a Grassmannian G(n,r) (n-dimensional
subspaces of an r-dimensional vector space, V") in the projective space P (A'_" V") > p(-Z) -1 ()1 a5
projective variety in the following way: let [K] € G(n,r). Then K is the intersection of + —n hyperplanes in our
vector space V7, where each hyperplane is given by a linear form

R
0= kjs&, j=1,...,r—n
=1

where ej,..., e, is a basis for V" and é€; are the dual basis. More simply put, K is the null space of the matrix
ki kizg ... kiy
ka1 koo ... koy
L= : ; :
kr—n,l kr—n.2 S kr——n.r
Now for each 1 < 1) < iy < ... < tr_n < 7 we define [i,12,...,i,—5] to be the determinant of the
(r —n) x (r —n) minor of L whose columns are the #;,13,...,%,—n columns of L, i.e.
A‘l 1y kl.i; }"l lr—n
2 . . "‘2 1) kz.i; k? Yeicnm
[£1; 32y vy dean] = det .
kr-n.i; kr—n.iz kr4n.l,_..

The Pliicker embedding is now defined to be the map

¢y Glnyr) — pln)-t
(K] — ([L,2,...,7r=n|:...:[n+1L,n+2,...,7]) (all minors)



and the homogeneous coordinates of @, .. ([K]) are called the Plicker coordinates of K.

It is important to note that this map does not depend on our choice of hyperplanes, but does depend on
our choice of basis for V”. We should also note that this map does in fact embed G(n,r) as a closed projective

variety in P(")=!. In other words, @, (G(n,r)) is the zero locus of some system of homogeneous polynomials
fi,..., fs in the variables xy 2 ,_ni...;Tnta,. » with coefficients in the base field of V”. We use the variables
T12, . r-ni---;Tn41,.,r to indicate that the z;, i, i, . coordinate of ®,  ([K]) is [i1,...,1r—n). The equations
fi =0, 1 <i< s are known as the Pliicker relations (see [3] or [4].

One way to give global coordinates on X = G(r — n— 1, H™™!), would be to embed X into the projective

r=1)

space Py " )=t via the Pliicker embedding ®,_,_1,_. However, this would require us to choose a basis for
HT='. Fortunately, there is a very natural way to avoid this problem.

Since K*¥~"~! ¢ H™! C R" we may view X as a submanifold of G(r — n — 1,r), in which case ®,_,_;,
embeds X in P&““)_l as a subvariety of ®,_,,_1(G(r —n — 1,7)). Under this map, a configuration P, =

™ )=
(zity.--yTin), t =1,...,7 is mapped into IP‘({"“) by taking all the determinants of the maximal minors of
our original feature point matrix

I T2 Tr1
Tiz2 X222 -t Tr2
M=
Ii,n In,‘Z Ir.n
1 1 1

T )=1
Embedding our shape space X into P|({‘“} in this fashion is in some sense a more natural way to give
; s G G e B ; 3 ;
global coordinates on X than embedding it into P](t ") . This method allows us to work directly with the
matrix determined by our configuration rather than forcing us to choose a basis for H™=1 and then rewriting
our basis for K™™' in terms of our chosen basis for H. Also, as we will see later in this paper, this method is
more closely related to the one that we will use in the full perspective case.

DEFINITION 1.2. Given a configuration Py,..., P, € R™ we will refer to the Pliicker coordinates of K™ "1
viewed as a subspace of R™ (rather than H*~') as the shape coordinates of the configuration P, ..., P;.

1.4. The Object /Image Relations

Given an object configuration Py,..., P, and an image configuration ¢}y, ..., @, we want to give necessary
and sufficient conditions (the object-image relations) for the Q; to be a generalized weak perspective projection
of the P;. Recall that we view our object space X as a subvariety of P()-! and our image space Y as a subvariety
of P() =1 As such, we want to view the set V of pairs (K, L) where L is an image shape that comes from a
generalized weak perspective projection of the object shape K (the so-called set of matching object-image pairs)
as a subvariety V C X x Y C p()-1 x p(3)-1. Therefore, our object-image relations should be a system of
bihomogeneous polynomials in the object and image shape coordinates whose zero locus is precisely V.

Recall that our object shapes are linear subspaces K™~% ¢ R" of dimension r — 4 and our image shapes are
linear subspaces L™~* C R" of dimension r— 3. The following relates object and image shapes under generalized
weak perspective projection.

THEOREM 1.3. Let Py,..., P, be an object configuration with corresponding object shape K™% and let Qy, ..., Q;
be an image configuration with corresponding image shape L™~*. Then the Q; are a generalized weak perspective
projection of the P; if and only 1f

Kicrlen cw

This fact and the incidence relations given in Theorem 1, §5, Chapter VII of Hodge and Pedoe [4] give us our
object-image relations.



THEOREM 1.4. Let P; = (z;,¥:,2i), 1 <1 <r be an object configuration with corresponding matriz

ry Iz Iy

M=| ¥ V2 = U
Z1 z2 Zr

1 1 1

and let Q; = (u;,v;), 1 <1 <r be an image configuration with corresponding matriz

Uy uz Up
N=j un v - v
11 1

Forl1 <i1 <ig<izg<iy<randl < j <j2 <js <r define the object shape coordinates

Tiy Ty Ty Tig
Yiin, Uiz VYia Vi
Ziy Ziz Ziy  Ziy

1 1 1 1

My ig,ig,iq = det

and the image shape coordinates
Uy, U, Uy,
NGgags = det | vy, v, w5
1 1 1
Then the points Q,...,Q, are the images of Py, ..., P, under a generalized weak perspective projection if and
only if

E : €1, 0 May a2, ATy a7 = 0
1SA1<Aa<r

forall choices of 1l a1 < aa <rand 1 < 51 < o < ... < Brs <1 wherel <7 < v < 713 <1 is the
complement of {\1,A2,B1,...,Br—s} in {1,...,7} when A\, A2, By,...,Br—5 are distinct (otherwise n, ,~, = 0)
and €y, », 15 the sign of the permutation

71172173|A1|/\2H6|v' "Iﬂr—5

of the numbers 1,...,r. The expressions Ma, as,x A2 00d Ty, 4, 4, Should be treated as skew-symmetric in their
indices.

As an example, consider the case r = 5. We pick @y = 1,a2 = 2 and no f's are required. Our formula
becomes

§ : Ex A2 2,00, 02 Ty 2 s
1<A1 <A <5

when v,727y3 is the complement of Ay, A2 in {1,...,5}. This yields
23425 — Mi235M24 + Mazasnizs = 0.

We get 10 such equations as we vary a; and as.

2. THE FULL PERSPECTIVE CASE

We now turn our attention from generalized weak perspective projections to the so-called pinhole camera
model, which is simply projection from a point P in projective space P* onto a hyperplane H not containing P:

7: P - (P} — HxP?

This case becomes much more difficult since we are now considering configurations of points in projective space
and hence are allowed to scale each of our points (homogeneous coordinates) by an arbitrary nonzero constant.



We will consider r points in projective 3-space, which we will again think of as feature points on an object.
(There is a hyperplane that does not pass through any of these points and the complement of that hyperplane
in P? is isomorphic to R2.) We will refer to this set of points as a projective object configuration or simply an
object configuration when it is clear that we are dealing with points in projective space. Now “taking a picture”
of the object is just projecting the object configuration from a point onto a hyperplane (which is isomorphic to
P2). We refer to this type of projection as a full perspective projection, and we call the image of a projective
object configuration under such a projection a projective image configuration or simply an image configuration.

When we view projection from a point as a map 7 : P> — P?, our projections take the form

R i

s |=1

= z
w

where T is a 3 x 4 matrix of rank 3 and equality is in the sense of homogeneous coordinates. Conversely, every
3 x 4 matrix T' of rank 3 defines a projection from some point in this way. More precisely, this point is given
by the 1-dimensional null space of T' (remember that points in projective n-space are 1-dimensional subspaces
of affine n + I-space).

We should note that if @Q = (R : S : T) € P? is the image of P = (X : Y : Z : W) € P? under a full
perspective projection T' (so @ = T'P) then for any 3 x 3 scalar matrix A and any 4 x 4 scalar matrix B we have
Q@ = (ATB)P. Thus, the set of full perspective projections is equivalent to the set of 3 x 4 matrices of rank 3
up to multiplication on the left or right by a scalar matrix.

Now let 7" be a full perspective projection. Let A be any 3 x 3 matrix with det(A) # 0 and let B be any
4 x 4 matrix with det(B) # 0. Then AT'B is again a 3 x 4 matrix of rank 3, i.e. ATB is again a full perspective
projection. Note that, as previously observed, if we multiply A and B by scalar matrices, the projection AT B
remains unchanged as a map between projective spaces. Thus, we should view A as an element of PG L(3) and
B as an element of PGL(4). (In general, PGL(k) is the quotient GL(k)/S where S is the subgroup of scalar
matrices.)

The impact here is that the best we can hope to do is to relate object configurations up to a PGL(4)
transformation with image configurations up to a PG L(3) transformation. Hence, our object shape space should
be U/PGL(4) for some open set U C (P*)" and our image shape space will be W/PGL(3)for some open set
W C (P?)", when we have r point features.

2.1. The Associated Variety of a Configuration

In the affine case, we were able to assign to each shape a distinct point in a fixed projective space. Un-
fortunately in the full perspective case, our ability to scale the homogeneous coordinates of the points of our
configurations complicates matters, so that no convenient analogue of the affine shape coordinates are available.
We circumvent this problem by instead assigning to each configuration a natural projective variety. Later in this
paper, we will discuss the possibilities made available by using Chow forms to give global coordinates on our
projective shape spaces.

Although ultimately we want to consider configurations of  points in F? and P*, let us begin by examining
configurations of 4 points in P!. Let P, = (z; :yi) € P for 1 <4 < 4. We will assume that the points are
not all the same point. In the spirit of the affine case, we make this configuration with these representative
homogeneous coordinates into a matrix

M=( Ty T2 Tz I4 )
Yr Y2 Y3z W

As in the affine case, this matrix corresponds to the point

ay L 2 s i v
(tryg @ Ty @ Mg Toa oyt Tgy) € G(2,4) C P(2)-! = P where m;; = det ( : J) 1€8 €% 4,

oY,



noting that since the points are not identical in P', at least one of the m;; is nonzero.

If for each 1 < ¢ < 4 we scale P; by a nonzero constant a;, we have the same configuration, but our matrix is

now
ag 0 0 0O

Ty T2 Ty T4 0 a2 0 0

Vi Y2 Y3 WU 0 0 a3 O

0 0 0 ay

which corresponds to the point
(a1a2muz : @1azmag @ @1agmyg : azagmas : azaamay : azagmag) € G(2,4) C PP
Thus for a given configuration of 4 points in P! we have a map ® : (R*)* — G(2,4) given by
®(a1,a2,a3,a4) = (a1a2m12 : @1a3mM3 : a1a4my4 : a2a3M23 ¢ A2a4M24 © Aza4Ma4)
(here R* is the multiplicative group of nonzero elements of R). Notice however that
®(a,a,a,a) = a®(myg : myg : Mg Mg : Moy : m3q) = (M2 : M3 1 Mg : Moz : Mgy : Mag) in P°.

So we have in fact a well defined map @ : (R*)*/R* = (R*)® — G(2, 4) whose image we will denote V(P;, Py, Ps, P;)
C G(2,4) C P° (or simply V when the configuration we are working with is understood). Thus, to each configu-
ration we may assign a variety V(Py, P,, P3, Py), the closure of V in P%, which we will call the associated variety
of the configuration.
PROPOSITION 2.1. Every configuration Py, Py, P3, Py is assigned a unique variety V(Py, Py, Ps, Py), and if two
configurations Py, Py, P3, Py and P{, P;, P;, P{ have the same associated variety, then they differ by a PGL(2)
transformation (and hence give the same point in our shape space).

Proof. The fact that every configuration is assigned a unique variety is obvious. So suppose that for two con-
figurations P, = (zi : %), 1 <i <4 and P/ = (z}:y}), 1 <i<4wehave V(P,, P, Ps, P) = V(P,, P3, P§, Py).
Then for some a;,az,a3, a4 € R*

. . . i " — ! I ! - A = " T ’
(maz @ myz : myg 2 Moz : My : Myq) = (a1aamiy @ ajazmiy A1a4M 4 © A2a3M53 © A2gMoy & A3a4MMYG,)

!

, ! T "
where m;; = det ( ;' ;’ ) and mj; = det ( :r: 7 ) So we have that the null spaces of the matrices
i ' 1 b

Ty Tz T3 T4 dud ( ayry axy azxh agT)
¥ ! ! ']
i Y2 ¥z Y4 a1y Gzyz Q3Yz Qaly

give the same point under the Pliicker embedding and hence are in fact the same linear subspace of RY. Thus
the matrices differ by the left action of a GL(2) matrix from which we see that the configurations Py, Py, P3, Py
and Py, P;, P3, P{ differ by a PGL(2) transformation. 0

Now, having placed our configurations Py, Py, Ps, Py (up to a PGL(2) transformation) in one-to-one cor-
respondence with the projective varieties V(Py, Py, P3, P4), we would like to understand the relations that the
points in V must satisfy. So let P, P, P3, Py € P! and let (zy2 : 713 : T14 : To3 : Toq : z34) be a point in
V = V(P,, Py, P3, Py). Then for some ay,az,a3,a4 € R* the following must hold

Tyz —ajagmyz =0
T3 —apasmyz = 0
Ty — ajagmyy =0
T3 — azagmaz =0
Tpq — Qzaqmgy =0

Taq — A3a4Mizq = 0



Using Groebner bases, we eliminate the a;’s from this system and obtain the following Theorem
THEOREM 2.2. V is the zero locus of three polynomials in the variables x12,. .., T34

fi = migmasT13T24 — M13Mo4T12T34
f2 = miamayT1aT23 — M1aMa3T12T34

fa = mi3maaT14T23 — M1aMm23T13T24

These same relations can also be obtained by observing that if i, i, 13,74 and jy, j2, 73, 74 are two permutations
of 1,2,3,4 then
Ty ig MhigigThyjaTiada = MMy iy Mgy (ajl ajzmju'a)(ajaajamjsh) i
MMy 52 MjajaTiyiaTigiy Mgy 52T 5a5 (ailai:miliz)(aisaicmisid)

We should note that since (myz : myg @ myg Mo : Moy : maq) and (12 : Tyg : Tiq © Tog © Tog @ Tzq) are points
in G(2,4) C P°, the Pliicker relations
P1 = My2May — M 3Mag + Mygmez =0

P2 = T12T34 — T13T24 + T14T23 =0

are satisfied. It is easily seen from these relations that as long as enough of the m;; are nonzero, we have that
V(fi) = V(fgl: V(fa) as subvarieties of (2, 4) and hence V is defined as the zero locus of any one of fi, fa, f3.
In particular V is a hypersurface in G(2,4) and so has dimension dim(V) = dim(G(2,4))-1=3.

All of the preceding discussion can be easily generalized to the case of 7 > n + 2 points in P". For each
configuration P; = (Zi0,...,Tin), 1 <i < r of r points in P*, we have a map @ : (R*)"/R* — G(n + 1,r)
obtained by constructing a matrix whose columns are representatives of Py, ..., P in P" and then scaling the
columns of that matrix. We denote the image of ® by V(P,.. ., P;). Thus, we place the configurations Pi,..., P,
of r points in P™ in one-to-one correspondence with the projective varieties V(Py, ..., P,).

Explicitly, the map @ : (R*)"/R* — G(n+ 1,7) is given by
®(ay, ... a;) = (@,my, i ... a,myy)

where Iy,..., Iy are the (n + 1)-subsets of {1,...,7} and ay, = [];¢;, ;. We would like to know for which
configurations is ® one-to-one. In other words, we would like to know for which configurations do we have

(a,mu, +...carymyy) = (my, ... :myy,) & a; = aj for all i, j

The following theorem gives a large set of configurations (but not necessarily all) for which @ is 1-1.

THEOREM 2.3. Suppose Py, ..., P, is a configuration of r points in P so that there is a subset P ..., P ., of
n + 2 points in this configuration having the following properties:

1. for every subset J = {j1,...,jn+1} C {t1,...,iny2} the points Pj,,..., P

ins1 do not ke in a single hyper-
plane (i.e. mj; #0)

2. there is some subset K = {ky,... kn} C {i1,...,in42} such that for all P, not in the set {P,,,... P .}
we have that the points Py, ..., Py, Ps do not all lie in a single hyperplane (i.e. my, k., s #0).

Then, the map ® is injective.

Proof. We will show that under these conditions,

(@ ang, @ oot @My ) = (M 5 o0 Mgy e a; = a; for all i, j.



Note that
(ar,myp, :...:arpympy)=(myp, :...:mypy,)
if and only for all 7 # 7,

!

apmy, - my,

ar,my;  my,

assuming of course that my, # 0.

First, let o, 8 € {1,...,r} be such that a, 3 are not in the set {iy,...in42}. Then by condition 2, if we let
A=k, ... ks, and let B =ky,..., k,, 3 we have that ma # 0 and mp # 0. Thus since

agmy _ my

apmepg mp
we have that

Sy
ag
and hence a, = ag.
Now, let a, be such that a is in {i1,...,in42} but 8 is not. Choose ji,...,j, in {i1,...,in42} so that

Js # Je if s # t and so that j; # a for all 5. Let A = {5,...,Jn,a} and let B = {ky,...,k,,3}. Then by
condition 1, m4 # 0 and by condition 2, mp # 0. Thus as above, we again get that a, = ag.

A similar argument showsihat if a and 3 are both in {#;,...,in42} then a, = ag. Thus, under conditions 1
and 2, we have that the map ® is 1-1. O

We see now that for configurations Py, ..., P, satisfying conditions (1) and (2), V(P,,-.-, P;) is isomorphic
to (R*)"/R* = R"~'. In particular, dim (m) = r — 1 which is consistent with our result in the case
of 4 points in P'.

We do have a slight variation from the case of 4 points in P! when we compute the defining equations of

V(P,...,P.). Consider the case of 5 points Pj,..., Ps in P!. Then we observe that for a point ()2 : ... : z45)
in V(P,, ..., Ps) we have for some ay,...,as € R*

M4 13M25T12T13T45 B mumtsmzsfﬂlazrm)(atﬂsrna)(aaﬂsms) B

TM12171137M45T14T13T25 mlzmlsmﬁ(ﬂlaq-’ﬂn)(al035!:13)(&265225)_

giving us the relation
M2MgMa5T14T13T25 — TM14M13M25T12T13T45 = 0.

So in general we will have some repetition of the entries of the indices even though in the case of 4 points in P
we did not.

THEOREM 2.4. For a configuration Py,..., P, of r points in P, the variety V(P,,..., P,) is the zero locus of
the following system of polynomaials

mpmp - MpTpTp, Ty —MyMy, M, X,

where Iy, ... I, Jy,..., Jx ranges over all n + 1-subsets of {1,...r} with the property that U:‘:I fyi= U:;l J;
as multisets and k ranges from 2 to some positive integer N(r). The exact value of N(r) is not known, but
computation of some small examples seems to indicate that N(r) = r — 2.



3. THE PROJECTIVE OBJECT-IMAGE RELATIONS

Given a projective object configuration Py,..., P, and a projective image configuration Q,, ..., Q,, we want to
(as in the affine case) find necessary and sufficient conditions for the Q; to be a full perspective projection of the P;.

Since every object configuration (fixing its homogeneous coordinates) gives a point in G(4,r) C P()-" and every

image configuration (fixing its homogeneous coordinates) gives a point in G(3,1) C P()1, the closure of the set
of matching object-image pairs should be a projective variety defined by a system of bihomogeneous polynomials
in the Pliicker coordinates miaa4, ..., mr_3._r on G(4, r) and the Pliicker coordinates nya3,...,n, 2 . on G(3,r).
These relations should be satisfied independent of our choice of representatives (homogeneous coordinates) for
our object and image configurations. In other words, we should have that if an image configuration Q,,...,Q,
is a full perspective projection of an object configuration Py,..., P, then the product variety

V(P,...,P) x V(Qy,-..,Q;) should be completely contained in V.

Now, consider an object configuration Py,..., P, with Py, Ps, P3, Py, Ps in general position. We may then
move the configuration by a projective transformation so that Py = (1:0:0:0),P, = (0:1:0:0),P3 = (0 :
0:1:0),P,=(0:0:0:1)and Ps =(1:1:1:1). Assume also that for all : > 6, P; does not lie in the plane
defined by Py, P2, P; so that P; = (psi—17 : pai—16 : Pai—15 : 1). It turns out that we can write py,...,pa,_15 in
terms of Pliicker coordinates in the following way

_ Ma234iMM 235 _ T34iTM235 _ Ty24i1M1235
P3i-17= —————— > Pai—1g = ————— Pri—15=———.
M123:7M2345 m123i11345 mMy123i1M1245

Note that the p; are defined independent of our choice of representatives of Py, ..., P for if we scale each P; by
a nonzero constant a;, we get

(agazasaimaay;)(ajazazasmiaas)  Mogeimioas

Pai-171 = =
(a1a2a30:m123:)(a20304a5M2345)  Mi23iM23as
) _ (a1a3a4aim134:)(@102a3a5M235) _ MM134i’m235
P10 = (a1a2030imuz0:) (@1030405M305) | Muzaitmiagas
P3ic1s = (araza4aim 24:) (a1a2a3asmi235) __ M124iM1235
P15 =

(fllazaaaam:23.)(010204051’?11245) M123:M1245

The values py,...,p3r-15 form a fundamental set of invariants for our object configuration.

Similarly let @y, ...,@Q, be an image configuration with Q;,Q2, @3, Q4 in general position and such that for
i > 5, Q; is not on the line defined by @ and Q2. We move the configuration by a projective transformation so
that @ =(1:0:0),Q2=(0:1:0),Q3 =(0:0:1),Q4=(1:1:1) and for each 1 > 5, Q; = (g2i—9 : qai_s : 1).
The projective invariants qy,...,q2,—g are again defined independent of our choice of representatives and are

given in Pliicker coordinates as
_ Nasiniy o Mai™i24

q2i-0 = y q2i-8 = .
N12:M234 n12iM134

When we make the preceding assumptions about the positioning of our configurations, the object-image
equations have been completely determined [12]. For example, in the case where n = 6, we have only one
object-image relation given in terms of the projective invariants:

—q2qap2P3 + qapaPs — 93P3 — 194P1 — QiPiP2 + iP1 = —QugapiP3 + QaPiPs — qapa — G2qap2 — @2pip2 + qape.

Making the appropriate substitutions and then clearing denominators and removing monomial factors, we



have the object-image relation in terms of the Pliicker coordinates to be

TM1257136T0234712123677012467701345MM2345 — M123M136702347711236770124677213457712345
—TN126713572347M012367711124571213467112345 + T2124711357212367721236 1212457721346 1112345
+1125M134M2367121235T12457101346712345 — T212470135M236710123571012467721346 02345
+112670134M235701236770124571213457102346 — T1247013672235772123677212457721 3451102346
—T1257136M2347711235772124677213457712346 + 111247013672235772123571212467111345712346
+112672135M2347M1235712457M13467112346 — T11267134M2357M1235 124513462346 = 0

We should note that since the p; and g; are defined independent of our choice of representatives for the P;
and @, this relation will be satisfied independent of our choice of representatives.

Now let o be a permutation of 1,...,r. Suppose that in our object configuration Py,..., P, the points
Py(1)s Po(2)s Po(3)s Po(4), Po(s) are in general position and that for all k > 6, P,(x) is not in the span of P, (1), Py (2),
P, (3)- Then we may move our configuration by a projective transformation so that F,;y = (1:0:0:0), P,(p) =
(0:1:0:0),Pp(3y =(0:0:1:0),Pyqy=(0:0:0:1),Ppsy = (1:1:1:1), and for k > 6, Pox) = (Phr_y7:
Pik—16 : Pak—1s : 1)-

Similarly, let 7 be a permutation of 1,. .., n, and suppose that in our image configuration Q,,. .., Q, the points
Qr(1), @r(2)» Qr(3), @r(a) are in general position and that for all k > 6, Q, () is not in the span of Qr(1yand Qy(a).
We now move Qy,...,Q, by a projective transformation so that Q1) = (1:0:0),Q,2) = (0:1:0),Q,(3) =
(0 103 1),Q,-(4) = (1 i Iqd 1) and for k 2 5, Q,-(k) o (q;k-g :qak—ﬂ . 1)

We now have a new set of object invariants pj,...,p5. ;5 and a new set of image invariants q{,...,q5, g
which, as before, may be written in terms of Pliicker coordinates

Mg (2)a(3)a(d)o(i)Ma(1)a(2)a(3)a(5)

Phi17 =
e Ma(1)a(2)o(3)a(i)Ma(2)a(3)a(4)a(5)
Phine = Ma(1)a(3)a(d)e(i)Ma(1)e(2)o(3)e(5)
18 g (1)a(2)0(3)e ()Mo (1)o(3)e (4)0(5)
P’ _ Mg (1)a(2)a(d)a(i)Ma(1)a(2)a(3)a(5)
L Mg (1)a(2)a(3)e(i)Mo(1)a(2)a(4)o(5)
B o= Ter(2)7(3)r (i) (1)r(2)7(4)
0 (@) () (@) @) (a)
’ (1) (3)r () (1)7(2)7(4)
Q2i-8 =

Rr(1)7(2)7 () Er(1)7(3)7(4)

keeping in mind that we view the myjx and the ng, as skew-symmetric in their indices.

Using the method of [12] we get a new set of object-image relations in terms of the new invariants which we
may again write in terms of Pliicker coordinates. We should notice that since our projective transformations
are completely determined by sending P, (1), Py(2), P(3), Po(a)s Pos) t0 (1:0:0:0),(0:1:0:0),(0:0:1:
0),(0:0:0:1),(1:1:1:1) respectively and by sending Q-(1), @r(2), @r(3), @r(a) to (1:0:0),(0:1:0),(0:
0:1),(L:1:1) respectively, we may assume that ¢(6) < ... < o(r) and that 7(5) < ... < 7(r). Taking all of
these object-image relations as o ranges over all permutations of 1,...,r with o(6) < ... < o(r) and as 7 ranges
over all permutations of 1,...,r with 7(5) < ... < 7(r) gives us a global system of object-image relations. This
system is still grossly overdetermined and more work is being done to reduce the number of relations in this
system.



4. CONCLUSION

The next step is to give a concrete description of the shape spaces in the full perspective case. This will
mean collapsing the associated variety V(P,..., P;) to a point. One way to do this is via the Chow form and
the Chow point of V (see [8]). We would then realize the shape space as a quasi-projective variety in some
projective space where it will acquire a natural metric. This program is the subject of our current work. While
the object-image equations provide a test for matching, the metrics provide an even more robust approach to
matching. For example, we often want to know if two configurations of a fixed number of points in 2D or 3D
are the same if we allow projective transformations. If they are, then we want a distance of zero, and if not, we
want a distance that expresses their dissimilarity — always recognizing that we can transform the points. The
Procrustes metric, described in the shape theory literature [6] and [7], provides such a notion of distance for
similarity transformations. However, it does not work for perspective transformations. Moreover, it is fixed in a
particular dimension. By that we mean that it cannot be regarded as giving us a notion of “distance” between,
say, a 3D configuration of points and a 2D configuration of points, where zero distance corresponds to the 2D
points being a full perspective projection of the 3D points. However, the metrics we developed in the affine
case can be used to give a natural measure of object-image matching. These metrics also provide a rigorous
foundation for error and statistical analysis in the object recognition problem. Similar metrics can be derived in
the full perspective case using the approach mentioned. The details will be in our forthcoming papers.
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Abstract

In this paper we survey some of the mathematical techniques that have led to useful new
results in shape analysis and their application to a variety of object recognition tasks. In partic-
ular, we will show how these techniques allow one to solve a number of fundamental problems
related to object recognition for configurations of point features under a generalized weak per-
spective model of image formation. Our approach makes use of progress in shape theory and
includes the development of object-image equations for shape matching and the exploitation
of shape space metrices (especially object-image metrics) to measure matching up to certain
transformations. This theory is built on advanced mathematical techniques from algebraic and
differential geometry which are used to construct generalized shape spaces for various projection
and sensor models. That construction in turn is used to find natural metrics that express the
distance (geometric difference) between two configurations of object features, two configurations
of image features, or an object and an image pair. Such metrics are believed to produce the
most robust tests for object identification; at least as far as the object’s geometry is concerned.
Moreover, these metrics provide a basis for efficient hashing schemes to do identification quickly,
and they provide a rigorous foundation for error and statistical analysis in any recognition Sys-
tem. The most important feature of a shape theoretic approach is that all of the matching tests
and metrics are independent of the choice of coordinates used to express the feature locations
on the object or in the image. In addition, the approach is independent of the camera/sensor
position and any camera/sensor parameters. Finally, the method is also independent of object
pose or image orientation. This is what makes the results so powerful.

Keywords: shape analysis, object recognition, shape space, generalized weak perspective, affine
group, shape coordinates, object-image metric, Riemannian metric.

1 Introduction

A solution to the problem of single-view recognition is often a crucial first step in many target
recognition and computer vision tasks. Understanding how information available in a single image
of an object, be it an optical image, a SAR image, or a radar range profile, relates to the target
object’s geometry is a key step in building reliable identification algorithms. For example, without
a priori knowledge of a sensor’s viewpoint, an object’s pose, or a sensor’s parameters, it is difficult
to efficiently recognize a three-dimensional arrangement of features (such as a geometric configu-
ration of lines and/or points) on an object from a single two dimensional view. What is needed
is an approach that is invariant to changing viewpoints, adjustments in the sensor parameters, or
changes in the object’s pose. Unfortunately, existing methods all too often rely on computationally
expensive template matching that is, strictly speaking, neither view nor pose invariant. Specifi-
cally, those methods use comparisons against templates created for each possible view and pose;



with the infinite range of possibilities being approximated by some finite number of discrete views.
Fortunately, recent mathematical developments in the theory of shape provide an alternative. To
carry out such an invariant, shape theoretic approach to target recognition, we need to seek out and
exploit properties and relationships that are geometrically intrinsic to the objects and/or images
being compared. Moreover, to develop this approach for different types of sensors, we must take
into account the fact that each type requires a different model of image formation and therefore a
different form of invariance. Radar and Ladar sensors require the use of an orthographic or scaled
orthographic model, while most optical sensors will use either a weak perspective, a generalized
weak perspective, or a full perspective model.

Once we understand, for various sensors, the contribution of a single image toward the recog-
nition or recovery of the geometry/shape of the object, it becomes easier to develop methods to
integrate the information from multiple images taken by uncalibrated, distributed sensors of vary-
ing types, or to make use of a series of images taken by a single sensor of a moving object. It also
makes it easier to understand and create flexible algorithms adapted to situations where the objects
are not rigid but more deformable, as is the case with many of the recognition problems related to
biometric or medical applications (e.g. face recognition, detecting heart or tissue anomalies, gait
recognition, etc.)

The requirement of view and pose invariance, as well as the desirability of a coordinate in-
dependent formulation, leads us to start with a characterization of a configuration of object or
image features by its 3D, 2D, or 1D shape, a mathematical notion related to geometric invariance.
The specific transformation group (Euclidean group, similarity or conformal group, affine group, or
projective general linear group) to which things should be invariant will be a function of the sensor
type. We then need a fundamental set of equations that expresses the relationship between the
3D geometry (shape) and its “residual” in a 2D (or 1D) image. These are known as object-image
equations. They completely and invariantly describe the mutual 3D/2D (or 1D) constraints. These
equations can be exploited in a number of ways. For example, from a given 2D configuration, one
can determine a set of non-linear constraints on the shape (geometric invariants) of the 3D configu-
rations capable of producing that given 2D configuration, and thus arrive at a test for determining
the object being viewed. Conversely, given a 3D geometric configuration (features on an object),
one can dervive a set of equations that constrain the shape of the images of that object; helping to
determine if that particular object appears in selected images.

The ultimate goal in all cases is to improve on and develop new algorithms for target recognition.
Our approach in this paper uses advanced mathematical techniques from algebraic and differential
geometry to construct generalized shape spaces for various projection and sensor models and for-
mulates the object-image equations in terms of the global shape coordinates for these spaces. We
then use the natural metrics on the shape spaces (which provide a measure of dissimilarity between
two object configurations or two image configurations up to the allowed transformations) to find
natural object-image metrics that express the distance (failure to match) between an object-image
pair. Zero value for these metrics will mean matching up to the relevant transformations and/or
projections. These metrics are pose and view invariant and are expressed in coordinate free terms.
They produce the most robust tests for target identification; at least as far as target geometry
is concerned. Moreover, such metrics provide the basis for efficient hashing schemes to do target
identification quickly and also provide a rigorous foundation for error and statistical analysis in the
ATR process.

Because of the limited space we have, we will content ourselves with introducing these ideas in
the generalized weak perspective case, which models an optical sensor where the object is in the far
field of view. This case is the most mathematically tractable and complete. Details can be found
in the references. For now, we introduce the theory and give some examples.



2 The Generalized Weak Perspective (Affine) Case

We consider r points in space, which we think of as feature points on some object. We refer to
this set of points as an object configuration. Next, we “take a picture” of the object by choosing
a plane and projecting these feature points into that plane. We will call this set of points in the
plane an image configuration.

In this section we will (1) identify the space of shapes, which are configurations modulo the
action of a certain group of transformations on R", n = 2, 3, and give global coordinates on the shape
space, (2) give necessary and sufficient conditions for an image configuration to be a projection of
an object configuration, and (3) define a natural metric on the shape spaces. For additional details
see Arnold, Stiller, and Sturtz [2].

2.1 The Generalized Weak Perspective Projection

The type of projections we will consider are called generalized weak perspective projections. If we
represent points P in R® (n =2 or 3) in column form P = (zy,...,T,,1)7, then these projections
take the form of a linear map T from R? to R? given by a matrix

tin tiz tiz tia
T=| tar ter toz t14
0 0 0 1

where T has rank 3.

Now let A be an invertible 3 x 3 matrix and let B be an invertible 4 x 4 matrix. It turns out
that if T' is a generalized weak perspective projection, then AT B is a generalized weak perspective
projection if an only if A and B are affine transformations i.e. A and B take the form

where S € GL(n) and ¢y,...,¢, € R.

What does this mean in terms of our object and image configurations? Suppose Q € R? is the
image of a point P € R® under a generalized weak perspective projection 7', i.e. Q = TP. Then
if we move P by some affine transformation B to another point P’ and if we move Q to another
point Q' by an affine transformation A, we will have that Q' = ATB~'P’. As a result, we see that
Q' is the image of P’ under the generalized weak perspective projection ATB~! (since A and B~!
are both affine transformations).

This observation shows us that by choosing to consider generalized weak perspective projections,
the best that we can hope to do is relate object configurations to image configurations up to affine
transformations.

2.2 The Affine Shape Spaces

As the preceding observation suggests, we should consider two configurations (object or image)
equivalent if they differ by an affine transformation. In a sense equivalent configurations are the
same object or image just rotated, translated, scaled, or otherwise moved by an affine transforma-
tion. Alternatively, we can view equivalent configurations as being the same object or image, but



with their feature locations expressed in a different coordinate system. We would like to construct
the space of configurations of r points in R™ modulo the action of the group of affine transforma-
tions. These spaces would then represent the distinct objects and images independent of pose or
view. To do this we must assume that the points in our configuration are non-coplanar for n = 3
or non-collinear for n = 2, which is reasonable since a configuration of coplanar points in R? would
in fact be a configuration of points in R? and would not represent a real 3D object, etc.

Let P, = (xi1,...,&in) for i = 1...r, r > n + 2 be a configuration of r non-coplanar (or
non-collinear) points in R, n = 3 (or 2), and consider the matrix

Ti1 T2 Tr,1
Ti2 T2 o ZTr2
M=
Iyn In,2 Trn
1 1 1
Now to the configuration P,..., P, we associate an (r —n — 1)-dimensional linear subspace,

K7™~"=1 C R". In particular, K"~"~! is the null space of M when we view M as a linear map from
R" to R™*!, The fact that K”~""! has dimension 7 — n — 1 follows from the observation that M
has rank n + 1 as a linear map because at least one (n + 1) x (n + 1) minor of M has non-zero
determinant due to non-coplanarity (or non-collinearity).

The important thing to notice is that if we apply an affine transformation A to our configuration
we obtain a new (n + 1) x r matrix M’ = AM, but the null space of M’ is exactly K™~"~!, the null
space of M. Moreover, since K" "' € H™! = {(vy,...,v,) € R"| 3, vi = 0}, we may assign to
our configuration the unique point [K™"""!] € G(r—n—1, H""!), the Grassmannian of (r —n —1)-
dimensional subspaces in the (r — 1)-dimensional space H"~!, a well understood compact manifold
of dimension n(r —n — 1).

Definition 2.1. We call the manifold X = G(r —n—1, H"™') the affine shape space for configura-
tions of r points in R™. If n = 3, we will call X = G(r — 4,7 — 1) affine object space (or just object
space) and refer to points in this space as object shapes. If n =2, we will call X = G(r — 3,r — 1)
affine image space (or just image space) and refer to its elements as image shapes.

Every point in X is of the form [K™™"~!| for some configuration Pj,...,P. € R", and most
importantly, if two configurations Py,..., P, € R" and Pj,..., P/ € R" give the same point in X,
then they differ by an affine transformation.

2.3 The Pliicker Embedding

Since X is a real manifold, we can find local coordinates for a point [K] € X; however, since
we ultimately want to give relations that tell us when an image configuration is a projection of
an object configuration, it would be more convenient to find global coordinates on X. We may
do so by mapping X into a projective space via the Plicker embedding. In general, the Pliicker
embedding embeds a Grassmannian G(n,r) (n-dimensional subspaces of an r-dimensional vector
space, V") in the projective space P (A" V") = P(-la) = o p(R)-1 a5 a projective variety in the
following way: let [K] € G(n,r). Then K is the intersection of r — n hyperplanes in our vector
space V', where each hyperplane is given by a linear form

.
0=ij_,é}, j=1,...,t—n
=1



where ey, ..., e, is a basis for V" and &; are the dual basis. More simply put, K is the null space
of the matrix

k11 Bia = Kig
7= k2',1 kz?,z o k;f_,.
kl‘-—ﬂ_l kr—.n_z . kr—n,r
Now for each 1 < 4, <i3 <... <idr_p <7 we define [iy, ip,...,ir-n] to be the determinant of
the (r —n) x (r — n) minor of L whose columns are the 4y, 13, ...,4,_, columns of L, i.e.
kl i1 kl,i'z kl Rl

[il,iz-, . ’il'—ﬂ] — det

kr—n,il kr—n.,ig kr~n.i,-_n

The Pliicker embedding is now defined to be the map

®nr: G(n,r) — pln)-1
(K] — (1,2,...,r=n]:...:[n+1,n+2,...,7]) (all minors)

and the homogeneous coordinates of ®,, . ([K]) are called the Plicker coordinates of K.

It is important to note that this map does not depend on our choice of hyperplanes, but does
depend on our choice of basis for V7. We should also note that this map does in fact embed
G(n,r) as a closed projective variety in P()-1. In other words, &, , (G(n,r)) is the zero locus of
some system of homogeneous polynomials f,..., fs in the variables x15 _,_pn;...;Zny1, With
coefficients in the base field of V". We use the variables 12 __,—n;...;Zns1..r to indicate that the
Tiy ig,...ir— coordinate of @, , ([K]) is [i1,...,%r—n]. The equations f; =0, 1 < i < s are known as
the Pliicker relations (see [4] or [5]).

One way to give global coordinates on X = G(r —n — 1, H™'), would be to embed X into the

r—1 =1
projective space Pl(l ") via the Pliicker embedding ®,_,,_;,_;. However, this would require us
to choose a basis for H™~!. Fortunately, there is a very natural way to avoid this problem.
Since K**~! ¢ H™™! C R" we may view X as a submanifold of G(r — n — 1,r), in which

case ®,_,_1, embeds X in E’g{‘“)_l as a subvariety of ®._,_;,(G(r —n — 1,r)). Under this

; : ; T1)-1 )
map, a configuration P; = (z;1,...,%in), ¢ = 1,...,7 is mapped into PI({‘“) by taking all the
determinants of the maximal minors of our original feature point matrix M.

(n:-l)_l

Embedding our shape space X into Py in this fashion is in some sense a more natural

g L. r—1 o1 .
way to give global coordinates on X than embedding it into ]PE1 ") . This method allows us to
work directly with the matrix determined by our configuration rather than forcing us to choose a
basis for H"~! and then rewriting our basis for K"~"~! in terms of our chosen basis for H.

Definition 2.2. Given a configuration Py,..., P, € R"™ we will refer to the Pliicker coordinates of
K7~"~1 viewed as a subspace of R” (rather than H™ ') as the shape coordinates of the configuration
Pigeosy B

2.4 The Object/Image Relations

Given an object configuration Py,..., P, and an image configuration Q,,...,Q, we want to
give necessary and sufficient conditions (the object-image relations) for the Q; to be a generalized



weak perspective projection of the P;. Recall that we view our object space X as a subvariety
of P(9-1 and our image space Y as a subvariety of P(;)'l. As such, we want to view the set
V of pairs (K,L) where L is an image shape that comes from a generalized weak perspective
projection of the object shape K (the so-called set of matching object-image pairs) as a subvariety
ViEX %Y & p()-1 x pG)-1, Therefore, our object-image relations should be a system of
bihomogeneous polynomials in the object and image shape coordinates whose zero locus is precisely
V.

Recall that our object shapes are linear subspaces K"~* C R” of dimension r — 4 and our image
shapes are linear subspaces L™™2 C R" of dimension r — 3. The following relates object and image
shapes under generalized weak perspective projection.

Theorem 2.3. Let Py,..., Py be an object configuration with corresponding object shape K™% and
let Qy,...,Q- be an image configuration with corresponding image shape L™ 3. Then the Q; are a
generalized weak perspective projection of the P; if and only if

Rr4*c I’ cHYcR

This fact and the incidence relations given in Theorem I, §5, Chapter VII of Hodge and Pedoe
[5] give us our object-image relations.

Theorem 2.4. Let P; = (zi,y;,2:), 1 <1 <1 be an object configuration with corresponding matriz

I Iz Iy
M| v v ow
21 2z Zy
1 1 1

and let Q; = (ui,vi), 1 < i <r be an image configuration with corresponding matrix

uy U Uy
N = v Uy - Uy
1| ¢ 1

Forl<ij<is<izg<ig<randl<j; <js < i3 <r define the object shape coordinates

I,'l Ti, Ti; Tiy

1Y : 3 -
det JH ylz yla y14

Zt'l 21‘2 253 Zi4

I 4 1 1

My dai3,i0 =

and the image shape coordinates

Wiy  Wip Uiy
Mjigegs =det | v, v, vy

1 1 1

Then the points Qy,...,Q, are the images of Py, ..., P, under a generalized weak perspective pro-
jection if and only if

E : €A A2 ey a0, 0 X2 Ty 2073 = 0
1<M <Aa<r



for all choices of 1 <oy <ap<randl <P <Pr<...<frs<rTuwherel <y <7<y <
r is the complement of {A1,A2,01,...,Pr—5} in {1,...,7} when A, A2, B, ..., Br—5 are distinct
(otherwise Ny, prs = 0) and €y, », is the sign of the permutation v1,7%2,73, A1, A2, B, - .-, Br—s5 of
the numbers 1,...,r. The expressions Ma, ay 2 Az GNd Ny vy, v Should be treated as skew-symmetric
in their indices.

As an example, consider the case r = 5. We pick oy = 1,a2 = 2 and no f’s are required. Our
formula becomes

Z EAI ,Azmlﬁd\l.f\zn’h'ﬁ'm
1<A1<A<5

where ;7273 is the complement of Aj, A2 in {1,...,5}. This yields mio3qnios — my23sn124 +
my245n123 = 0. We get 10 such equations as we vary a; and as:

0 = mi234n124 — My235M124 + M1245M123 0 = mi234n245 — M1245M234 + M2345M124
0 = mj234m135 — M1235M134 + M1345M123 0 = mia35n245 — M1245M235 + M2345M125
0 = mi234n145 — M1245M134 + M1345M124 0 = mi234n345 — M1345M234 + M2345M134
0 = my235n145 — M1245M135 + M1345M125 0 = my235n345 — M1345M235 + M2345M135

0 = mi234m935 — Mi235M234 + Ma345M123 0 = mi245M345 — M1345M245 + M2345M145

3 Metrics

How far apart are two object shapes or two image shapes? Since the shape spaces are Grassman-
nians, we can use the natural Riemannian metric on these manifolds, known as the Fubini-Study
metric to define distances (see Arias, Edelman, and Smith [1]).

3.1 A Riemannian Metric on the Object Shape Space and on the Image Shape
Space

Given two objects, i.e. two r-tuples Py,..., P, and ﬁl, 3% ‘,E. of points in R3. We define the
distance between them, or more specifically, the distance between their shapes K =4 and K =4
as follows. First we choose orthonormal bases for K™% and K™ 4 as subspaces of R" and arrange
those vectors as the columns of two r x (r — 4) orthonormal matrices K and K. We then compute
the singular values of the (r —4) x (r — 4) matrix K7 K and denote by 6;, (i = 1,...,r — 4) the arc
cosines of the singular values. These angles are the so-called principal angles between l:he subspaces.

Definition 3.1. The affine shape distance in object space between two r-tuples of object feature
points is defined to be

r—4
dov;(K™4, K™4) 282 Z(a,rtr:ms)\‘-}2

where A; are the singular values of KTK for the orthonormal matrices K and K created by choosing
orthonormal bases of the subspaces K™% and K™% in R". See below for examples.

Definition 3.2. Given two r-tuples of points Qy,...,Q, and Qy, ... ,Q,. in the plane representing
certain image features, we define the affine shape distance in image space between them to be

r—3

S B2 Sy = Z‘PJ ) ~(arccos )2

j=1



where 7; are the singular values of LTL for orthonormal matrices L and L created by choosing
orthonormal bases for L™~3 and L™3 in R”. See below for examples.

We remark that these distances are the natural metric distances on the shape spaces X and
Y which are the Grassmann manifolds Grg(r — 4, H"™!) and Grg(r — 3, H""!), because they are
geodesic submanifolds of Grg(r — 4,r) and Grg(r — 3, r) respectively.

3.2 A “Metric” Measure of Matching Between an Object Feature Set and an
Image Feature Set

Finally, we can compute a “distance” between an object [K™~%] € X and an image [L" %] € Y.
This can be done in two ways. First working in object space X, we get

dg (K™, (L) = Rmri_n‘ dov; (K™, K™1)

where K™= runs over all objects capable of producing image L™ 3, i.e. all subspaces K—4crLr3.
Second working in image space Y, we get

(K™, [L72]) = min d (272, L77)
L

where L™= runs over all images of the object K™, i.e. all subspaces L™3 ¢ H™" which contain
KEr=4,

In both cases these values work out to be the square root of the sum of the squares of the
principal angles between K% and L™ computed from the arc-cosines of the singular values of
LTK in the same manner as above.

Theorem 3.3 (Object/Image Metric Duality). The distance between a set of object features
Py ... P, and a set of image features Q, ...Qy can be computed either in object space by minimiz-
ing the affine shape distance between P, ..., P, and all object r-tuples which are capable of being
projected to Qy,...,Q, (via a generalized weak perspective projection), or in image space as the
minimum affine shape distance between @y, . ..,Qr and all generalized weak perspective projections
of P1,...,P.. Moreover, these two minimums are equal, t.e. d(ljﬂ = (2))”.

Of course dp; = 0 if and only if P, ..., P, can be projected to Q, . . ., @, via a generalized weak
perspective projection. We remark that analogs of this result can be proved for other projection
models.

4 Examples

In this section we create a number of examples and provide the Mathematica code necessary to
implement some of the results of the paper. Additional code to generate the shape space equations
and the object-image equations can be obtained from the author. The examples below involve the
case of five (n = 5) feature points projected from 3D to 2D under generalized weak perspective
projection (also known as the affine case).
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4.1 Object Data

We begin by creating three (arbitrary) 3D objects. The objects are described by point features
written as columns of a 4 by n matrix in so-called homogeneous form (z,y, z,1). Also the determi-
nants of its 4 by 4 minors (the so-called Pliicker or shape coordinates) are listed lexicographically.
Some of the syntax here is taken from Mathematica commands.

()
—
|
—

§ 4
. 1=} 3.0 &
ObjectDataW = (1 %2 : : ;) Minors(ObjectDataW, 4] = {{4, -1 —2 T _2}}
11t}
0901 g
ObjectDataX = 0?1 i % Minors[ObjectDataX, 4] = {{-2,3,3,1,3}}
1111
1 3 20-3
ObjectDataY = | ! 7 Sy Minors[ObjectDataY, 4] = {{3,10,-2, —8,1}}
-3
1 1111

4.2 Group Actions

We now use rotation, translation, scale and reflection matrices to create object data equivalent
to (i.e. having the same shape as) ObjectDataY above.

1 2 2
g_? 52 : 200 0
RotAndTransl = | 5 -3 =5 ! ScaleAndReflecl = ( 002 3)
$§ 2 L p
3 '3 3 000 1
00 0 1
23 1 1 2
ObjectDataZl = RotAndTransl ObjectDataY = | © s ¥ 3 i
1 G
1 I 1 1 1

Minors[ObjectDataZ1, 4] = {{3,10,-2,-8,1}}

4 3 4 92 4

ObjectDataZ2 = ScaleAndReflecl.RotAndTrans1.ObjectDataY = 3 %? “; —03 —;2
~5 —3

LT T 11

Minors[ObjectDataZ2, 4] = {{—18, 60, 12,48, —6}}

Note that ObjectDataY, ObjectDataZl, and ObjectDataZ2 all have, up to scale, the same 5-vector
of Pliicker (shape) coordinates, because they are just transformations of the same object.

4.3 Projections

Now we create some generalized weak perspective projection matrices taking us from 3D to 2D.

o 1 —201 _ z-1-12 N 0100
projectionl = (—l 01 3) projection2 = [ 5 3 _51 projection3d = (0 01 0)
0 001 0 3 0 % 0001
Finally, we form a number of images using these prolectlons and the object data above
1 0 3
ImageDatalX = projectionl.ObjectDataX %
1
Minors(ImageDatalX, 3] = (-5 -1 __121 3 5—% —4 Tl r—3 % %)
24 ¥ B
ImageData2X = projection2.0ObjectDataX = | 3 2 —% 2 -2
12 1 1 1
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Minors(ImageData2X,3] = (3 -} & -& 2 9 -1 % 2 -—5)
4 3310
ImageDatalY = projectionl.ObjectDataY = |2 1 2 3 8
1 1 1 .1 4
Minors[ImageDatalY,3] = (-1 -4 -19 -1 -6 -14 I 12 -1 -9
7 11 1
—— 1 g 22
ImageData2Y = projection2.ObjectDataY = | 1 & 5 5 -1l
I 3 I % 1
Minors[ImageData2Y,3] = (3 % 26 3 24 16 %1 -114§ —14‘3 ~5)
— 121313
ImageData3W = projection3.ObjectDataW = |1 5 2 3 g
1 1 I T &
Minors[ImageData3W,3] = (-3 -3 -4 3 -I -1 -1 -3 1 3)

Notice that ImageDatalX and ImageData3W have the same image shape. They differ by a scale
factor of 2 and the Pliicker (shape) coordinates are the same up to a factor of 4. Thus we have an
instance of two different, i.e. inequivalent, object shapes producing the same image shape. Likewise
one can see that the images produced by a particular object, say ObjectDataX, can result in
different (inequivalent) image shapes. For example ImageDatalX and ImageData2X are not the
same shape because their vector of shape coordinates are not scalar multiples of each other. This
illustrates the many-to-one and one-to-many nature of the relationship between object shapes and
image shapes.

4.4 Metrics

The next commands in Mathematica, while complicated looking, just create an orthonormal
basis for the row span of our data matrices, multiplies two such matrices together, and then finds
the singular values of the resulting 4 by 4, 3 by 3 or 3 by 4 (4 by 3) matrix. The arc-cosines of these
singular values are the so-called principal angles between the subspaces spanned by the two sets of
rows. The square root of the sum of the principle angles squared is the value of the metric. In the
case of object space and of image space this is the distance provided by the natural Riemannian
metric. Of course you are free to scale the metric. One obvious scaling is to set the total volume
of the shape space equal to one, so that volume can be associated with a probability measure.

4.5 Object-Object Metric

What follows is a Mathematica function that computes the distance between two objects in ob-
ject space. Note that the code doesn’t depend on the number of feature points or the dimensionality
of the points.

ObjectSpaceMetric[Objl_, Obj2_]:=
Norm[ArcCos[SingularValueList[N [QRDecomposition|Transpose[Obj1]][[1]]. Transpose
[QRDecomposition[Transpose[Obj2]][[1]]]], Tolerance — 0]}]

An an example lets compute some distances.

ObjectSpaceMetric[ObjectDataW, ObjectDataX]| = 0.0654569
ObjectSpaceMetric[ObjectDataX, ObjectDataY]| = 1.54176
ObjectSpaceMetric[ObjectDataY, ObjectDataZ2| = 2.58096 x 1078
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Notice that this says ObjectDataW and ObjectDataX are fairly close but that ObjectDataX and
ObjectDataY are relatively far apart. Of course ObjectDataY and ObjectDataZ2 are really zero
distance apart because they differ by an affine transformation of 3-space.

4.6 Image-Image Metric

We now introduce the metric in image space. Note that it is given by the same code — only the
input sizes have changed.

ImageSpaceMetric[Im1_, Im2_]:=ObjectSpaceMetric[Im1, Im2];
Let’s now compute some distances in image space between our image shapes.

ImageSpaceMetric[ImageDatalX, ImageDatalX] = 0.
ImageSpaceMetric[ImageDatalX, ImageData2X] = 0.408449
ImageSpaceMetric[ImageData2X, ImageDatalX] = 0.408449
ImageSpaceMetric[ImageData2X, ImageData2X] = 0.

The above computation illustrates that our metric is symmetric and of course gives zero distance
between an image and itself. It also shows again that these two images of ObjectDataX are not
equivalent and cannot be transformed one to the other by an affine transformation of 2-space.

ImageSpaceMetric[ImageDatalY, ImageData2Y] = 0.813806
ImageSpaceMetric[ImageDatalX, ImageDatalY] = 1.14686
ImageSpaceMetric[ImageDatalX, ImageData2Y] = 0.641144
ImageSpaceMetric[ImageData2X, ImageDatalY] = 1.22873
ImageSpaceMetric[lmageData2X, ImageData2Y] = 0.775138
ImageSpaceMetric[ImageDatalX, ImageData3W| = 0.

None of the images compared are equivalent, i.e. they are all distinct shapes, except for Image-
DatalX and ImageData3W which we previously observed were the same shape.

4.7 Object-Image Metric

Finally we introduce the object-image metric as a fundamental way to compare the matching
of object data with image data.

ObjectImageMetric[Obj_, Im_| := ObjectSpaceMetric[Obj, Im);

This is in fact the metric discussed in the text, although a proof of that fact requires some work.
Examples:
ObjectImageMetric(ObjectDataX, ImageDatalY] = 1.14218
ObjectImageMetric[ObjectDataX, ImagedatalX] = .49012 x 10~®
ObjectImageMetric[ObjectDataX, Imagedata2X| = 2.10734 x 10~%
Note these later two are zero because the image data really is a generalized weak perspective pro-

jection of the object data The object-image metric will evaluate to zero if and only if a generalized
weak perspective transformation exists which carries the object data to the image data.



Final example:

ObjectImageMetric[ObjectDataX, ImageData3W] = 1.49012 x 10~*
ObjectImageMetric[ObjectDataW, ImageDatalX] = 2.10734 x 10~®
ObjectImageMetric[ObjectDataW, ImageData2X] = 0.0259829

Of course the first two of these are zero because imageData3W and imageDatalX are both the same
image shape and are projections of ObjectDataW and ObjectDataX respectively. However there
is no way to project ObjectDataW to another of ObjectDataX’s images (namely imageData2X)
because our object-image “distance” in that case is not zero. The closer the Object-Image
metric is to zero the closer some projection of the given object will be to the given
image.

Object-Image Relations

Finally let’s check an object-image equation. For ObjectDataX we have [1234] = -2 [1235] =
3/2 [1245] = 5/2. For ImageDatalX we have [123] = -5 [124] = -1 [125] =-11/2. The first
object-image equation is [1234][125]-[1235][124]+[1245](123]. The reader can check this is indeed
zero. We leave it as an exercise to check the vanishing for the other nine object-image equations.
(See above.) Note that knowing one image of an object imposes linear relations on the shape
coordinates of the object and if we have sufficiently many independent views of the object, we
can solve for its shape, which determines it uniquely up to an affine transformation of 3-space.
Mathematica code is available to generate the object-image equations and the defining equations
of the shape spaces inside the appropriate projective space.
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